

BBN+ Rich Transcription System for CTS

Amit Srivastava, Daben Liu, Francis Kubala, Daniel Kiecza, Jared Maguire, Rich Schwartz BBN Technologies

Matthew Snover, Bonnie Dorr *University of Maryland, College Park*

Mari Ostendorf, Jay Kim, Sarah Schwarm, Bill McNeill University of Washington

RT-03F Workshop

Washington, DC

13 November, 2003

Outline

- Rich Transcription System for CTS
 - Overview
 - Speech Detection and Speech-to-Text
 - BBN Sentence Boundary Detection
 - SBD System Combination
 - Progress Results
- Evaluation Results
- Post-Eval Progress on Sentence Boundary Detection
- Summary

CTS Rich Transcription System Overview

C = Sentence Boundaries

D = Filler Words, Edit Words and IP

Speech Detection & Speech-to-Text

- Acoustic Segmentation using Cross-Channel Event Modeling¹
 - 2 classes, Non-Speech (N), and Speech (S), for each channel
 - GMMs trained for each of the 4 Cross-Channel Events: NN, NS, SN, SS
 - Viterbi Decoding to label each Data Frame with an Event
 - Silence or Non-Speech Segments are discarded
- Single best BBN-only system used in RT03 Spring evaluation
 - Time constraint and prioritization
 - No pause-fillers in BBN + LIMSI combined STT output
- BBN + LIMSI Combined STT Primary Submission for RT03S was used for Metadata experiments post-RT03F Evaluation

² R. Schwartz, et al., "Speech recognition in multiple languages and domains: The BBN/LIMSI EARS system," Proc. ICASSP-2004, Montreal, Canada, May 2004, appeared elsewhere on this proceeding.

¹ Daben Liu, Francis Kubala, "A Cross-Channel Modeling Approach for Automatic Segmentation of Conversational Telephone Speech," ASRU'2003, to be presented, US Virgin Island, Dec 2003.

BBN Sentence Boundary Detection System

Sentence boundaries hypothesized at each word boundary

Prosodic Feature Extraction

Feature Type	Feature Description	# Features
	Pause Duration	
Pause	• Pause Attribute (Filler, Breath, etc.)	10
1 ausc	Time since last Pause	10
	Normalized Pause Duration	
Speaking Rate	Absolute Value	2
~ F • • • • • • • • • • • • • • • • • • •	Difference across Putative Boundary	_
-	Absolute Values	
Energy	Difference across Putative Boundary Output Description:	6
	First Difference of Energy	
	Discontinuous Chains in Voiced Regions Interpolated Continuous Pitch	
Pitch	• Interpolated Continuous Pitch	30
	• First-Order Pitch Differences Total	48

6

Acoustic Subsystem for SBD

Acoustic Subsystem

- 2-layer feed-forward neural network trained on 48 prosodic features
- 3 Sentence classes: *statement*, *incomplete*, *no-sentence*
- Features are discrete, continuous, and boolean
- #Nodes: 48 input, 500 hidden, 3 output
- BackProp training, minimum cross-entropy error criterion
- 50 hours of LDC corpus used for training
- NN scores are estimates of posterior probability of sentence class
 - Class likelihoods estimated by scaling with the class priors

Linguistic Subsystems for SBD

Word-based Linguistic Subsystem

- LM probabilities estimated by the BBN BYBLOS LM tools
- Trigram LM with Sentence-class tokens inserted between words
- LM trained on 500K words from the LDC 50 hour training trans.
- LM scores used as transition probabilities in Combined Viterbi Decoder

Hybrid Word-POS Linguistic Subsystem

- Starts from same resources and tools as the Word-based system
- Ratnaparkhi³ MAXENT tagger used to hypothesize POS tags
- Top 1000 frequent words left as is in the transcriptions
- Rest of the words are replaced by their POS tags
- Trigram LM estimated with Hybrid word-POS transformed transcripts

³ A. Ratnaparkhi, "A Maximum Entropy Part-of-Speech Tagger," in Proc. of the Empirical Methods in Natural Language Processing Conference, 1996, pp. 133-141.

SBD Progress Summary for Dev03F

Word-based SBD System

A.SBD Experiment	SER
August DryRun baseline (old training)	63.0
With compound words	60.8
Without compound words	52.5
100 frames feature window size	52.0
System tuning using class biasing	51.6

Hybrid Word-POS based SBD System*

SBD Experiment	SER
Pure POS LM	69.7
Hybrid Word-POS LM	52.3

^{*}Bug in the POS Training Procedure discovered post-evaluation

SBD System Combination

SBD System Combination Overview

SBD System Combination with UW

- BBN Word-based SBD output combined with UW SBD output
 - Sentence class scores and SBD hypothesis at each word boundary used to create a 9 dimensional score vector
 - Sentence boundaries from reference transcriptions are transferred to word boundaries in STT hypothesis
 - NN with 50 hidden nodes trained using MSE backprop
- During development, training and test are Jacknifed on 2 equal halves of the Dev03F set
 - For the Evaluation, SBD Combination NN is trained on the complete Dev03F set

System Combination of BBN SBD Systems

- Same Acoustic subsystem used with Word-based and Hybrid Word-POS based Linguistic Subsystems
- Same NN-based procedure used for SBD system combination

SBD System Combination Results on Dev and Eval

BBN1 + UW

CDD Exposiment	Dev03F	Eval03F
SBD Experiment	SER	SER
UW Serial System	50.6	46.6
BBN Word-based SBD System	51.6	50.9
SBD Combination	49.0	46.7

BBN1 + BBN2

CDD Expaniment	Dev03F	Eval03F
SBD Experiment	SER	SER
Word-based system	51.6	50.9 ⁺
Hybrid Word-POS based system	52.3	48.7*
SBD Combination	51.1	49.3 ^x

- + Primary Submission
- * Did not submit this system in the Evaluation due to non-positive results on Dev03F
- **X** Contrast Submission

Final Results

System	SBD	Edit	Filler	IP	SR	RT1	RT03
Dev03F							
BBN + UMD	51.6	85.4	49.5	70.5	11.4	27.2	37.3
Eval03F							
UW + BBN	46.7	88.5	51.0	68.4	10.1	25.2	33.9
BBN + UMD	50.9	87.9	48.8	69.0	10.2	25.3	34.7

- Results were consistent going from Dev to Eval
 - Eval is an easier test set compared to Dev
 - Most of the gain in RT03 TER is due to better RT1 TER

Post-Eval Experiments

- Processed the BBN + LIMSI primary submission STT output for MDE experiments
 - Re-inserted pause-fillers from single-best BBN STT output into the Combined STT output
- Bug fixes in the Hybrid Word-POS based SBD system

BBN SBD Improvements Post-Eval on Dev03F

Word-based SBD System

SBD Experiment	RT1	SBD
	TER	SER
Pre-Eval System on Single-best STT	27.2	51.6
Pre-Eval System on BBN+LIMSI STT	24.3	47.2

Hybrid Word-POS based SBD System

SBD Experiment	RT1	SBD
	TER	SER
Pre-Eval System on Single-best STT	27.2	52.3
Pre-Eval System on BBN+LIMSI STT	24.3	47.0
With POS bug fixes on new STT	24.3	46.3

Summary

- BBN combined with UW for Sentences
 - UW used the combined sentences to re-run TBL for Disfluencies
- BBN integrated with UMD for Disfluencies
 - Disfluency hypothesis from UMD integrated into a single RTXML file
- Despite insufficient time, BBN developed 2 systems for Sentence Boundary Detection in CTS
 - Hybrid Word-POS based SBD system (shows a lot of promise)
 - System combination (needs more work)
- Future Work
 - Combine output from BBN, UW, and UMD into an integrated RT output
 - Better SBD system combination techniques
 - Integrate Parsing for Rich Transcription

